Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405732

RESUMO

The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCγ1/Ca 2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro . Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca 2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.

2.
Commun Biol ; 6(1): 42, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639734

RESUMO

The Membrane Attack Complex (MAC) is responsible for forming large ß-barrel channels in the membranes of pathogens, such as gram-negative bacteria. Off-target MAC assembly on endogenous tissue is associated with inflammatory diseases and cancer. Accordingly, a human C5b-9 specific antibody, aE11, has been developed that detects a neoepitope exposed in C9 when it is incorporated into the C5b-9 complex, but not present in the plasma native C9. For nearly four decades aE11 has been routinely used to study complement, MAC-related inflammation, and pathophysiology. However, the identity of C9 neoepitope remains unknown. Here, we determined the cryo-EM structure of aE11 in complex with polyC9 at 3.2 Å resolution. The aE11 binding site is formed by two separate surfaces of the oligomeric C9 periphery and is therefore a discontinuous quaternary epitope. These surfaces are contributed by portions of the adjacent TSP1, LDLRA, and MACPF domains of two neighbouring C9 protomers. By substituting key antibody interacting residues to the murine orthologue, we validated the unusual binding modality of aE11. Furthermore, aE11 can recognise a partial epitope in purified monomeric C9 in vitro, albeit weakly. Taken together, our results reveal the structural basis for MAC recognition by aE11.


Assuntos
Complemento C9 , Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Animais , Camundongos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complemento C5b , Complemento C9/química , Complemento C9/metabolismo , Proteínas do Sistema Complemento/metabolismo , Epitopos
3.
Nat Commun ; 13(1): 6178, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261433

RESUMO

The zinc-dependent metalloprotease meprin α is predominantly expressed in the brush border membrane of proximal tubules in the kidney and enterocytes in the small intestine and colon. In normal tissue homeostasis meprin α performs key roles in inflammation, immunity, and extracellular matrix remodelling. Dysregulated meprin α is associated with acute kidney injury, sepsis, urinary tract infection, metastatic colorectal carcinoma, and inflammatory bowel disease. Accordingly, meprin α is the target of drug discovery programs. In contrast to meprin ß, meprin α is secreted into the extracellular space, whereupon it oligomerises to form giant assemblies and is the largest extracellular protease identified to date (~6 MDa). Here, using cryo-electron microscopy, we determine the high-resolution structure of the zymogen and mature form of meprin α, as well as the structure of the active form in complex with a prototype small molecule inhibitor and human fetuin-B. Our data reveal that meprin α forms a giant, flexible, left-handed helical assembly of roughly 22 nm in diameter. We find that oligomerisation improves proteolytic and thermal stability but does not impact substrate specificity or enzymatic activity. Furthermore, structural comparison with meprin ß reveal unique features of the active site of meprin α, and helical assembly more broadly.


Assuntos
Fetuína-B , Metaloendopeptidases , Humanos , Microscopia Crioeletrônica , Metaloendopeptidases/metabolismo , Metaloproteases , Precursores Enzimáticos , Zinco
4.
Elife ; 112022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36000711

RESUMO

The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.


Assuntos
Toxinas Bacterianas , Proteínas Hemolisinas , Animais , Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Proteínas Hemolisinas/metabolismo , Lipossomos/metabolismo , Mamíferos/metabolismo
5.
Nat Struct Mol Biol ; 29(8): 767-773, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864164

RESUMO

P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gßγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gßγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Neoplasias , Sítios de Ligação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais
6.
PLoS Comput Biol ; 18(3): e1009930, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333855

RESUMO

Protein structure fundamentally underpins the function and processes of numerous biological systems. Fold recognition algorithms offer a sensitive and robust tool to detect structural, and thereby functional, similarities between distantly related homologs. In the era of accurate structure prediction owing to advances in machine learning techniques and a wealth of experimentally determined structures, previously curated sequence databases have become a rich source of biological information. Here, we use bioinformatic fold recognition algorithms to scan the entire AlphaFold structure database to identify novel protein family members, infer function and group predicted protein structures. As an example of the utility of this approach, we identify novel, previously unknown members of various pore-forming protein families, including MACPFs, GSDMs and aerolysin-like proteins.


Assuntos
Biologia Computacional , Proteoma , Algoritmos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Aprendizado de Máquina
7.
Nat Struct Mol Biol ; 28(12): 982-988, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887559

RESUMO

Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neurofibromatose 1/genética , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Membrana Celular/metabolismo , Proliferação de Células/genética , Microscopia Crioeletrônica , Humanos , Mutação com Perda de Função/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Conformação Proteica
8.
Biochem Soc Trans ; 49(6): 2749-2765, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747994

RESUMO

Pore-forming proteins (PFPs) are a broad class of molecules that comprise various families, structural folds, and assembly pathways. In nature, PFPs are most often deployed by their host organisms to defend against other organisms. In humans, this is apparent in the immune system, where several immune effectors possess pore-forming activity. Furthermore, applications of PFPs are found in next-generation low-cost DNA sequencing, agricultural crop protection, pest control, and biosensing. The advent of cryoEM has propelled the field forward. Nevertheless, significant challenges and knowledge-gaps remain. Overcoming these challenges is particularly important for the development of custom, purpose-engineered PFPs with novel or desired properties. Emerging single-molecule techniques and methods are helping to address these unanswered questions. Here we review the current challenges, problems, and approaches to studying PFPs.


Assuntos
Porinas/metabolismo , Microscopia Crioeletrônica , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Porinas/genética
9.
Front Immunol ; 11: 581906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178209

RESUMO

Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.


Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Perforina/metabolismo , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Nat Commun ; 10(1): 4288, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537793

RESUMO

Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated ß-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bactérias/imunologia , Microscopia Crioeletrônica , Humanos , Lipossomos/metabolismo , Lisossomos/fisiologia , Macrófagos/imunologia , Microscopia de Força Atômica , Domínios Proteicos , Estrutura Secundária de Proteína
11.
Nat Commun ; 9(1): 3266, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111885

RESUMO

Complement component 9 (C9) functions as the pore-forming component of the Membrane Attack Complex (MAC). During MAC assembly, multiple copies of C9 are sequentially recruited to membrane associated C5b8 to form a pore. Here we determined the 2.2 Å crystal structure of monomeric murine C9 and the 3.9 Å resolution cryo EM structure of C9 in a polymeric assembly. Comparison with other MAC proteins reveals that the first transmembrane region (TMH1) in monomeric C9 is uniquely positioned and functions to inhibit its self-assembly in the absence of C5b8. We further show that following C9 recruitment to C5b8, a conformational change in TMH1 permits unidirectional and sequential binding of additional C9 monomers to the growing MAC. This mechanism of pore formation contrasts with related proteins, such as perforin and the cholesterol dependent cytolysins, where it is believed that pre-pore assembly occurs prior to the simultaneous release of the transmembrane regions.


Assuntos
Complemento C9/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Proteínas de Membrana/química , Domínios Proteicos , Animais , Complemento C9/genética , Complemento C9/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Proteínas do Sistema Complemento/química , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica
12.
Philos Trans R Soc Lond B Biol Sci ; 372(1726)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28630159

RESUMO

The membrane attack complex (MAC) is an important innate immune effector of the complement terminal pathway that forms cytotoxic pores on the surface of microbes. Despite many years of research, MAC structure and mechanism of action have remained elusive, relying heavily on modelling and inference from biochemical experiments. Recent advances in structural biology, specifically cryo-electron microscopy, have provided new insights into the molecular mechanism of MAC assembly. Its unique 'split-washer' shape, coupled with an irregular giant ß-barrel architecture, enable an atypical mechanism of hole punching and represent a novel system for which to study pore formation. This review will introduce the complement terminal pathway that leads to formation of the MAC. Moreover, it will discuss how structures of the pore and component proteins underpin a mechanism for MAC function, modulation and inhibition.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.


Assuntos
Membrana Celular/química , Complexo de Ataque à Membrana do Sistema Complemento/química , Microscopia Crioeletrônica , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...